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e Data:

— n samples (from the same distribution) X

e Tabular data
e Images, sequences, graphs
— their n labels y

e Asingle categorical/qualitative or continuous/quantitative
value
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— Predict y from X (regression/classification)

General idea: find a model that minimizes (more or less accurately) a
loss on the training data (+ some constraints)
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Example 1: Biomarker discovery
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Which SNPs (or other genomic measurements) explain the
phenotype?

Chloé-Agathe Azencott. Machine learning tools for biomarker discovery, Sorbonne Université,
HDR dissertation, tel-02354924 (2020).

Lotfi Slim, Clément Chatelain, Chloé-Agathe Azencott, Nonlinear post-selection inference for
genome-wide association studies, BioRxiv (2020).



Example 2: Chemogenomics
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Which SNPs (or other genomic measurements) explain
the response-to-treatment phenotype?

Federica Eduati et al. Prediction of human population responses to toxic compounds
by a collaborative competition, Nature Biotechnology (2015).



Example 3: DNA sequencing

Predict base identity from changes in electric current
measured by Oxford Nanopore long read sequencers

Ryan R. Wick et al. Performance of neural network basecalling tools for Oxford
Nanopore sequencing, Genome Biology (2019).

Variant calling: predict variant from sequence
alignments converted to image data

Ryan Poplin et al. A universal SNP and small-indel variant caller using deep neural
networks, Nature Biotechnology (2018).



Example 4: TFBS Prediction
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Predict whether a DNA sequence binds a given
transcription factor.

Dexiong Chen et al. Biological sequence modeling with convolutional kernel networks,
Bioinformatics (2019).



Example 5: Disease-gene prediction

Gene network Disease similarity
network

Which nodes of a gene network are associated with
which disease?

Sezin Kircali Ata et al. Recent Advances in Network-based Methods for Disease Gene
Prediction, Briefings in Bioinformatics (2020).



Example 6: Spatial transcriptomics
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Automated classification of mMRNA localization patterns

Racha Chouaib et al. A Dual Protein-mRNA Localization Screen Reveals Compartmentalized
Translation and Widespread Co-translational RNA Targeting, Developmental Cell (2020).



Why haven’t we cured cancer yet?

Autonomous Al algorithm based on biomarkers

Biomarker Detection (mostly CNN)

- Hemorrhages
- Microansurysms
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Idx-DR: automatic detection of diabetic retinopathy, FDA approved in 2018
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What works well

e« Nature of the data

— Images (modeling well understood)

Challenge: we don’t understand genomes nearly as well.
— Very large data sets to train models on

ImageNet > 14 million images

transfer learning makes it possible to start from a neural
network trained on natural images to learn from medical
Images

Challenge: Our data sets are small.
e Nature of the question

— Humans can perform the task.
Challenge: Humans cannot perform the task.
That’s why they’re interesting :-)



Relevant current ML challenges

e Learning from small data sets
few-shot learning
e Learning from several data sets
federated learning / differential privacy / domain adaptation
e Describing & understanding
interpretability
e Trusting what is learned
verification / certification

e Learning from heterogeneous data types (sequences,
genomic measurements, images, graphs and more)

multi-modality / multi-view learning
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